
a known temperature. Subscripts: i, initial binder; 2, 3, intermediate and condensed 
pyrolysis products; 4, inert filler; 5, gas phase; ~, number of the gaseous component; H, 
initial state; K, final state; w, surface Y:(t). IIM, iteration-interpolation method. 
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SOLUTION OF A TWO-DIMENSIONAL HEAT-CONDUCTION PROBLEM 

FOR A GEOMETRICALLY COMPLEX DOMAIN BY AN INTEGROINTER- 

POLATION METHOD 

N. V. Kerov UDC 536.24 

A methodology is proposed for the construction of an algorithm to solve heat 
transfer problems for spatial domains of complex geometric shape. 

The creation of a new engineering operating under high-temperature loading or intensive 
cooling conditions is associated with carrying out a large amount of special temperature 
investigations of materials and structures. Such operations are a constant necessity for 
many branches of industry, consequently, thermal computation methods are also perfected 
simultaneously with the rise in the demands on engineering systems. Computational algorithms 
based on one-dimensional formulations of heat transfer problems are most widespread. If a 
notable fraction of algorithms arrived earlier at analytic methods of solution, then numer- 
ical methods have acquired greater weight at this time in connection with the development 
of computer technology. These methods possess a substantial advantage resulting from the 
possibility of their utilization for different formulations of problems, for instance, with 
any nonlinearities taken into account. 

However, when studying fine physical processes associated with structure heating, it 
is already not always sufficient to utilize a one-dimensional heating model Hence, a large 
quantity of researches has appeared devoted to methods and algorithms for the solution of 
heat transfer problems in multidimensional formulations. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 3, pp. 464-471, March, 
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All the above is valid even for inverse heat transfer problems. It should be noted 
that by far still not all the domains of possible application are included in the domain 
of solving inverse problems by one-dimensional formulations. As materials of the All-Union 
Seminar on Inverse Problems held in 1987 show, the most unexpected formulations are possi- 
ble. However, even here the study of temperature processes most often requires the passage 
from one- to multidimensional formulations of inverse heat transfer problems. For instance, 
to determine the heat flux distributed over the external surface of a structure that pos- 
sesses high heat conduction along the generator, a one-dimensional heat conduction model 
or, say, a certain heat flux sensor inserted in the structure and using the one-dimensional 
heat propagation model cannot always be utilized. In these cases the use of inverse prob- 
lems in multidimensional formulations [i] may be the single exit from the situation. The 
solution of inverse problems on the basis of two-dimensional, and even more, of three- 
dimensional heat propagation models can cause definite difficulties. The purely mathemati- 
cal questions associated, say~ with uniqueness of the solutions should here be extracted. 
Purely computational difficulties also exist that appear in connection with the limited 
fast-response and operational storage of modern computers. 

Relying on the above, we make the deduction that it is necessary to have a good algo- 
rithm (program) for the solution of the appropriate direct heat transfer problem in order 
to develop an effective algorithm of the solution of inverse heat transfer problems in par- 
ticular. What should be understood as a good algorithm will be clear from the subsequent 
text. 

An algorithm of the solution of the direct heat transfer problem for a generalized two- 
dimensional equation is examined in this paper. 

The creation of algorithms for direct heat conduction problems does not, as a rule, 
cause difficulties in principle. However, the algorithms can differ substantially from 
each other in specific formulations. This is related to the manifold of two-dimensional 
problems encountered in temperature investigation practice, The problems can differ in 
the stage of examining the spatial domain in which the solution will be Sought. The domain 
can be a simple rectangular shape. The heat transfer equation in this case is written in a 
rectangular coordinate system. In more complex cases one of two possible planes in a cylin- 
drical or spherical coordinate system must be used. In practice, simple geometri c shapes 
are encountered much more rarely than complex shapes having, say, curved boundaries that do 
not fit into an orthogonal grid. Moreover, the computed geometric domain can itself be 
multiconnected, have "vacancies" or inclusions characterized by singular thermal conditions 
or thermophysical characteristics. It is visibly impossible to propose a certain generaliz- 
ing approach that would assure the creation of an absolutely universal algorithm capable of 
solving the heat transfer problem for any of the designated cases. However, preparation of 
the algorithms for specific formulations would result in the creation of a large quantity 
of separate algorithms and programs that can, as a rule, be used only by the authors them- 
selves. 

An analogous situation occurs even in the determination of sets of initial data. 

Let us examine the influence of specific geometric shapes on algorithms of heat trans, 
fer problems in more detail. 

An interesting methodused in problems to compute the flow around complex bodies is 
proposed in [2]. The method maps the physical flow domain into a rectangular domain on a 
plane. In other words, the solution of the partial differential equations is executed in 
curvilinear coordinate systems consistent with the boundaries of an arbitrary domain. Spe- 
cial slits along the connection boundaries are introduced for multiconnected domains during 
the mapping onto a single rectangle. However, sufficiently complex transformations must be 
performed to obtain the difference analogs of the initial equations. Initially the deriva- 
tives in Cartesian coordinates are converted into differential expressions with derivatives 
in curvilinear coordinates and derivatives of the Cartesian coordinates with respect to the 
curvilinear. Only afterwards is the difference approximation of the derivatives realized in 
the transformed domain. Approximation errors are estimated for the transformations performed. 
The method is presented in this paper as an example of the possible approaches and, consequent- 
ly, questions associated with the approximation errors of this method are not examined. How- 
ever, the investigations performed show that for large deviations of the initial curvilinear 
grid from orthogonality, the approximation errors increase especially in the near-body domain 
where one-sided derivatives are utilized as a rule [2]. The method of constructing adaptive 
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Fig. I. Control volume. 

grids [3] should be considered another direction. Its sense is that an adaptive displace- 
ment of the nodes is performed along one coordinate for the grid constructed by some method 
so as to achieve the best possible conditions for solving the problem. 

It is seen from all the above that a great deal of attention is expended on questions 
of discretization of problems in the computational domains in thermo- and hydrodynamics. 

In the case when a computational grid has been selected successfully, the question of 
selecting the numerical method for solving the problem occurs. 

Algorithms utilizing complex discrete representations of the initial differential equa- 
tions are not touched upon in this paper since these algorithms have a sufficiently limited use 
for special classes of problems. 

The presence of a large quantity of physical problems related to heat transfer and 
hydrodynamics processes resulted in the growth of a quantity of programs utilizing substan- 
tially the same algorithm for the solution of the direct problem on the basis of a general- 
ized heat transfer equation. These programs are differentiated by structure organization 
and by methods of giving the initial information. In this case the desire to create a suf- 
ficiently universal program (complex of programs), capable of being adapted easily to differ- 
ent formulations of the direct heat conduction problems and consequently to inverse problem 
formulations also, is completely natural. The program complex to solve inverse heat trans- 
fer problems in one-dimensional formulations, as proposed in [6, 7], can be called the proto- 
type of such a program. It should be noted that this complex is the most complete at this 
time. It is easily adapted to the solution of diverse problems of heat transfer: direct, 
inverse boundary, inverse coefficient, and optimal temperature measurement planning problems. 

Many approaches utilized in this complex remain legitimate in going over to problems in 
two-dimensional formulations. But the very problem of creating a universal complex is suffi- 
ciently complicated since the amount of needed initial information grows multiply. Program 
adaptation to a set of geometric shapes, to a set of possible boundary conditions must be 
provided for here. In the case of multiconnected computational domains, the program should 
use different thermophysical coefficients, including the anisotropic (orthotropic). 

Let us examine one of the possible specific realizations of such a program. We first 
select the integrointerpolation method proposed in [4] as the numerical method. This method 
possesses good "physicality." Its modification is developed for the case of a generalized 
equation and is designated the "control volume" method in [8]. It should be stipulated at 
once that despite the fact that the selected method imposes its imprint on the formation of 
the algorithm and program, another numerical method, the method of varible directions, say, 
can be realized in the program. Such a substitution does not cause any substantial changes 
in the program structure. 

Let us examine the numerical solution method. A small volume separated in the compu- 
tational domain in which energy balance conditions are assured is represented in Fig. i. 
Within the limits of this volume a generalized heat transfer equation of the following kind 
is valid: 

pC (T) ~ -t- P + puy -- Br ~x (T) .q- - ~y (T) -[- qv (T), 

w h e r e  A r = 1 ,  B r = 1 ,  D r = 1 f o r  a r e c t a n g u l a r  c o o r d i n a t e  s y s t e m ,  x = ~ ,  y = r ,  A r = r ,  
B r = 1 / r  2 ,  D r = r f o r  a c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  ( r a d i c a l  s e c t i o n ) ,  x = z ,  y = r ,  A r = 

r ,  B r = 1 ,  D r = I f o r  a c y l i n d r i c a l  c o o r d i n a t e  s y s t e m  ( a x i a l  s e c t i o n ) ,  pu  x ,  0Uy a r e  t h e  c o n -  
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vection rates, respectively, in the Ox and Oy directions, pC(T)is the volume specific 
heat, ~x(T), ly(T) are the heat conductions, respectively, in the Ox and Oy directions, 
and qv(T) is a volume source or sink. 

To obtain the discrete analog of (I), we integrate this equation in a small volume 
while simultaneously taking the average within the limits of a finite increment h<. We 
represent the first derivatives in the expression obtained in finite-difference form. Fur- 
thermore, following [4], we select an implicit approximation scheme of finite-difference 
expressions for the derivatives, resulting in the following mode of writing the discrete 
analog of (i) 

where 

Ctp Tp = a s T e  § atvTv:~ -6 a N TN + ct D To -~ D, ( 2 )  

= - -  ; aw = - - S ~  + ; 
2 (AxL Dp 2 (kx)~ Dp 

9u~ ~ S ; PUa ~d a N S n ~  aD = - - S d - ~  Sd; 
2 (Ay)~ " 2 

OUd OU e pLi~ ~,, ~d ~e Se X~ S e 9CP-" Vp - -  KpVp; ap = pun S,~ Sa q- St & § Sn Se % § + 

b = K~Vp +A~CAf VpT ~ 

E n t e r i n g  i n t o  t h e  d i s c r e t e  a n a l o g  ( 2 )  o f  t h e  i n i t i a l  d i f f e r e n t i a l  e q u a t i o n  a r e  S e ,  S n ,  
and  S d ,  t h e  a r e a s  o f  t h e  c o n t r o l  v o l u m e  f a c e s ,  k e ,  Xw, Xn, Xd, t h e  h e a t  c o n d u c t i o n  o f  t h e  
f a c e s ,  u e ,  u w, u n ,  u d a r e  t h e  r a t e s  o f  c o n v e c t i o n  t h r o u g h  t h e  f a c e s ,  T ~ i s  t h e  t e m p e r a t u r e  
a t  t h e  p r e c e d i n g  t i m e ,  and  Kc,  Kp a r e  t h e  c o e f f i c i e n t s  o f  t h e  l i n e a r i z e d  s o u r c e ,  

Using (2), a discrete grid can be constructed whose nodes are arranged at the centers 
of the control volumes. If a condition is posed that the faces of the near-boundary control 
volumes agree with the boundaries of the spatial domain, then in this case the boundary con- 
ditions can be introduced as coefficients of the linearized source. 

Without taking convection into account the boundary conditions can be written as fol- 
lows in general form 

OT 

K~ -O--n- + K~T -}- K~ = O, ( 3 ) 

where K l = 0, K 2 = i, K s = -T B are boundary conditions of the first kind; Kl = X, K 2 = 0, 
Ka = -qB are boundary conditions of the second kind; KI = ~, K= = ~, K 3 = -~T m are boundary 
conditions of the third kind, TB, qB are the temperature and heat flux on the boundary, 
is the heat transmission coefficient, and T m is the temperature of the medium from outside 
the boundary. 

In this case the coefficients of the linearized source for boundary conditions of the 
second kind, say, are represented as 

KP = O; Kc = qBSs ,  ( 4 )  

where S g is the area of the control volume face that agrees with the boundary of the spatial 
domain. 

The expressions (3) and (4) are valid if and only if the face of the control volume 
agrees with the boundary of the spatial domain. But another case is possible, when the nodes 
of the discrete grid formed agree with the boundaries. Here, (i) must be integrated in half 
the control volume in order to approximate the control volume. 

The considered formulation of the problem is valid even for multiconnected geometrically 
complex domains in a rectangular or cylindrical coordinate system. If straight lines are 
drawn parallel to the coordinate systemdirections along breaks of the outer boundary (Fig. 
2), then the constructed enlarged grid forms new subdomains. We later call these subdomains 
macrovolumes. Such an approach is used in [6, 7]. The formulation (I) and (3) of the heat 
transfer problemis valid within the macrovolumes. The factorization method can be used for 
the solution along the lines of the discrete grid. 
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Fig. 2. Determination of the two-dimensional 
temperature field in a multiconnected domain: 
a) partition of the multiconnected domain into 
macrovolumes and possible assignment of the 
initial data (boundary conditions and thermo- 
physical coefficients); b) example of tempera- 
ture field determination. 

Let us consider the heat transfer condition on the macrovolume boundaries. The bound- 
ary conditions on the boundary common with the spatial domain are approximated analogously 
to (3). The conditions on the connecting boundaries in the case of ideal contact are satis- 
fied automatically, i.e., the solution of the problem along the discrete grid lines is rea- 
lized by continuous factorization. A special approximation of the conditions on the connect- 
ing boundary must be realized in the presence of a contact (thermal) resistance. For in- 
stance, the expression [6] 

K~k(T) OT~ } KsTi__K6Z(T ) OTi+ l KTTi+I .... Ks, 
Ox Ox (5) 

Kgk (T) OTi q K~oTI --KnTi+t = Kn 

can  be w r i t t e n  f o r  t h e  c o n d i t i o n s  on t h e  c o n n e c t i n g  b o u n d a r y  in  t h e  Ox a x i s  d i r e c t i o n  ( F i g .  
3 ) ,  where  K j ,  j = 4,  12 a r e  c o e f f i c i e n t s  g o v e r n i n g  t h e  s p e c i f i c  e n e r g e t i c  c o n d i t i o n s  on t h e  
c o n n e c t i n g  b o u n d a r y .  I n  t h e  g e n e r a l  c a s e  Kj can  depend on t h e  t i m e .  I f  ( i )  i s  i n t e g r a t e d  
in  t h e  c o n t r o l  vo lume h a l v e s  l o c a t e d  a round  t h e  d i s c r e t e  g r i d  n o d e s ,  t h e n  a d i s c r e t e  a n a l o g  
of the type 

% T B ,  = a ~ T ~ i a E T E q - b  

is obtained after finite-difference approximation of the first derivatives, where 

, .i I,-  ,olll; 
MB 

%~ = %. + K~Kll (UB. " U~) 4- K9 -~~ (UB, - -  U~) + 
SB, 

(6 )  
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Fig. 3. Control volumes at the 
boundary of the energy connec- 
tion of the subdomains. 

+ (KI1K~, + KloM1~.) + K.,,K,I ' K ,,~4l~, I Cp.V~, K3,VB, ; 

K~',K~ K~ r~ ,  -r" Kc~ s, + K n K ,  " Ts ,  - -  Kc.VB. ; b = KI,~Ks -~- K,.,M:~, + ( -r- 

S~,,ko, S ~  D,,-- �9 
De :: (Ax)-----~' (Ax)~ 

The q u a n t i t y  MB2 in (6) governs the  hea t  t r a n s f e r  c o n d i t i o n  from the  node B 2, SB~ is  
the  a rea  of  the  c o n t r o l  volume f ace s  making c o n t a c t ,  and OUB~ is  the convec t ion  r a t e  through 
the  f a c e s  making c o n t a c t .  

The o p e r a t o r  [ I l l ,  f21] i s  i n t r o d u c e d  in [8] and deno tes  s e l e c t i o n  of the  g r e a t e s t  
va lues  of  f l  and f2" 

T h e r e f o r e ,  by us ing the  d i s c r e t e  analogs  (2) and (6) and the  methodology of  forming s e t s  
of macrovolumes, the  hea t  t r a n s f e r  problem can be so lved  f o r  d i f f e r e n t  s p a t i a l  domains of  
g e o m e t r i c a l l y  complex shape.  Moreover,  i n t r i n s i c  boundary c o n d i t i o n s  and the rmophys i ca l  
c o e f f i c i e n t s  can be given f o r  each macrovolume, which a f f o r d s  the  p o s s i b i l i t y  of us ing  d i f -  
f e r e n t  s e t s  of  i n i t i a l  and boundary c o n d i t i o n s  f o r  the  s o l u t i o n  of the  problem. 

An a l g o r i t h m  is  compiled on t he  b a s i s  of  the  methodology c o n s i d e r e d  and a program is  
w r i t t e n  f o r  the  s o l u t i o n  of  hea t  t r a n s f e r  problems.  The p o s s i b i l i t y  of  r a p i d  a d a p t a t i o n  
of  the  program f o r  s p a t i a l  domains of  d i f f e r e n t  geomet r ic  shape and f o r  d i f f e r e n t  s e t s  of 
boundary conditions and thermophysical coefficients is provided. 

In conclusion, it should be noted that approximation of the macrovolume faces must be 
considered for spatial domains with curvilinear boundaries. Step boundaries or triangular 
control volumes adjoining the curvilinear macrovolume boundaries can be used for this. 

The temperature field obtained by using the proposed algorithm is represented in Fig. 
2b as an illustration. 

NOTATION 

T, temperature, ~, time; Oxy, rectangular coordinate system; 0, density; C, specific 
heat; X, heat conduction; u, convection rate; O r , cylindrical coordiante system; A r, B r, 
Dr, coefficients connecting the coordinate systems; q, a source; a~.aE, aw, ax, ao , coefficients 
of the difference analog; S, area of a control volume face; Vp, control volume; T o , tempera- 
ture of the previous time layer; Kp, K C, linearized source coefficients; Kl, Ki, K3, coef- 
ficients of a generalized writing of the boundary conditions; K~, K S , K e, K 7, K 8, Ks? K10, 
Kll, KIz, coefficients of a generalized writing of the energy coupling conditions. 
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CONSTRUCTION OF SMOOTHING SPLINES BY LINEAR PROGRAMMING 

METHODS 

A. G. Pogorelov UDC 517.536.946 

The mathematical questions and algorithms for constructing n-th order smooth- 
ing splines by means of experimental (kinetic)dependences are elucidated. 

i. Let the function f(x) e cQ[x], Q e n that takes on the approximate values f(x I) + 
61 ..... f(x N) + 6 N be given discretely with the errors 61 ..... 6 N at the nodes x I ..... 
x N on the segment X c R. It is required to approximate the function f(x) in each interval 
[x i, xi+l), i = I, N - i by a polynomial of n-th degree, n e 3: 

yi  (X) : aoi + al i  X -F a~i x z  + . . . i - .  ani  xn,  x 6 [xt ,  Xi+l) (1)  

so as to satisfy the requirements [1-6]: I) fusion of the spline derivatives at the mesh 
nodes S = {x I ..... XN} up to the (n - i) order 

I ~ �9 ." : , ~ I n 
aoi  -J- O'li)'i - 7  Cl2i,'~i ~ . . . .  --F- ar, iXi : -  ao.i§ 

~(n--  l)! a , . .  1 i '--n! a , i x  i - a,~ 1 i--l, i :~- l~  N - - 2 i  

II) the requirement of minimal variation of the (n - l)-derivative of Yi(X) (i.e., 

(2)  

x A, j' (/"-'~ 
x i  

in order (x))~ corresponding to condition [a~i I ~ min, v = n - i, n, i = i, N - i, 

to avoid oscillating behavior of the graph of the spline; III) location of the spline graph 
within the error corridor: 

[ I/~ (xl )  - -  ao~l ~ .  6j, l - -  1, ,u - -  1, 
(3)  

1! /6  (x .v)  - -  ~  - -  ~l  . , v - , x , v  . . . . .  a , , . , v_ , x ; , .  I -.<. ~.v. 

2. Conditions I and III yield the search domain for the interval values of the spline 
approximation coefficients by the system of constraints 

aol < [8 (xi)  q -  6i ,  
i 

- -  aol ~ - - f 6  (Xl) ,-[- tSi, 
9 i n ~ 01 

aoi -17 OliXi., 1 "-[- a,,ixT:--i ~.. �9 " " -V ani3.i+l - -  ao . i  ~-i (4)  
�9 . . o . i 

(n - -  1)[a,~_t. i ~  n! a,tixi: t -a , ,_ l , i+ t  ::0, i : :  1, N - - 2 ,  

ao.,~_, -~/1~ (xx_0 + a.v_.,, 
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